700 research outputs found

    Photometric observations of selected, optically bright quasars for Space Interferometry Mission and other future celestial reference frames

    Full text link
    Photometric observations of 235 extragalactic objects that are potential targets for the Space Interferometry Mission (SIM) are presented. Mean B, V, R, I magnitudes at the 5% level are obtained at 1 - 4 epochs between 2005 and 2007 using the 1-m telescopes at Cerro Tololo Inter-American Observatory and Naval Observatory Flagstaff Station. Of the 134 sources which have V magnitudes in the Veron & Veron-Cetty catalog a difference of over 1.0 mag is found for the observed-catalog magnitudes for about 36% of the common sources, and 10 sources show over 3 mag difference. Our first set of observations presented here form the basis of a long-term photometric variability study of the selected reference frame sources to assist in mission target selection and to support in general QSO multi-color photometric variability studies.Comment: 40 pages, 13 figures, 4 table

    The Full-sky Astrometric Mapping Explorer -- Astrometry for the New Millennium

    Get PDF
    FAME is designed to perform an all-sky, astrometric survey with unprecedented accuracy. It will create a rigid astrometric catalog of 4x10^7 stars with 5 < m_V < 15. For bright stars, 5 < m_V < 9, FAME will determine positions and parallaxes accurate to < 50 microarcseconds, with proper motion errors < 50 microarcseconds/year. For fainter stars, 9 < m_V < 15, FAME will determine positions and parallaxes accurate to < 500 microarcseconds, with proper motion errors < 500 microarcseconds/year. It will also collect photometric data on these 4 x 10^7 stars in four Sloan DSS colors.Comment: 6 pages, 4 figures, to appear in "Working on the Fringe

    Quantifying Nearshore Sea Turtle Densities: Applications of Unmanned Aerial Systems for Population Assessments

    Get PDF
    Although sea turtles face significant pressure from human activities, some populations are recovering due to conservation programs, bans on the trade of turtle products, and reductions in bycatch. While these trends are encouraging, the status of many populations remains unknown and scientific monitoring is needed to inform conservation and management decisions. To address these gaps, this study presents methods for using unmanned aerial systems (UAS) to conduct population assessments. Using a fixed-wing UAS and a modified strip-transect method, we conducted aerial surveys along a three-kilometer track line at Ostional, Costa Rica during a mass-nesting event of olive ridley turtles (Lepidochelys olivacea). We visually assessed images collected during six transects for sea turtle presence, resulting in 682 certain detections. A cumulative total of 1091 certain and probable turtles were detected in the collected imagery. Using these data, we calculate estimates of sea turtle density (km-2) in nearshore waters. After adjusting for both availability and perception biases, we developed a low-end estimate of 1299 ± 458 and a high-end estimate of 2086 ± 803 turtles per km-2. This pilot study illustrates how UAS can be used to conduct robust, safe, and cost-effective population assessments of sea turtle populations in coastal marine ecosystems

    Astrophysics of Reference Frame Tie Objects

    Get PDF
    The Astrophysics of Reference Frame Tie Objects Key Science program will investigate the underlying physics of SIM grid objects. Extragalactic objects in the SIM grid will be used to tie the SIM reference frame to the quasi-inertial reference frame defined by extragalactic objects and to remove any residual frame rotation with respect to the extragalactic frame. The current realization of the extragalactic frame is the International Celestial Reference Frame (ICRF). The ICRF is defined by the radio positions of 212 extragalactic objects and is the IAU sanctioned fundamental astronomical reference frame. This key project will advance our knowledge of the physics of the objects which will make up the SIM grid, such as quasars and chromospherically active stars, and relates directly to the stability of the SIM reference frame. The following questions concerning the physics of reference frame tie objects will be investigated

    Interferometry

    Get PDF
    The following recommended programs are reviewed: (1) infrared and optical interferometry (a ground-based and space programs); (2) compensation for the atmosphere with adaptive optics (a program for development and implementation of adaptive optics); and (3) gravitational waves (high frequency gravitational wave sources (LIGO), low frequency gravitational wave sources (LAGOS), a gravitational wave observatory program, laser gravitational wave observatory in space, and technology development during the 1990's). Prospects for international collaboration and related issues are also discussed

    Long-lived space observatories for astronomy and astrophysics

    Get PDF
    NASA's plan to build and launch a fleet of long-lived space observatories that include the Hubble Space Telescope (HST), the Gamma Ray Observatory (GRO), the Advanced X Ray Astrophysics Observatory (AXAF), and the Space Infrared Telescope Facility (SIRTF) are discussed. These facilities are expected to have a profound impact on the sciences of astronomy and astrophysics. The long-lived observatories will provide new insights about astronomical and astrophysical problems that range from the presence of planets orbiting nearby stars to the large-scale distribution and evolution of matter in the universe. An important concern to NASA and the scientific community is the operation and maintenance cost of the four observatories described above. The HST cost about 1.3billion(1984dollars)tobuildandisestimatedtorequire1.3 billion (1984 dollars) to build and is estimated to require 160 million (1986 dollars) a year to operate and maintain. If HST is operated for 20 years, the accumulated costs will be considerably more than those required for its construction. Therefore, it is essential to plan carefully for observatory operations and maintenance before a long-lived facility is constructed. The primary goal of this report is to help NASA develop guidelines for the operations and management of these future observatories so as to achieve the best possible scientific results for the resources available. Eight recommendations are given

    3D Printing in Zero-G ISS Technology Demonstration

    Get PDF
    The National Aeronautics and Space Administration (NASA) has a long term strategy to fabricate components and equipment on-demand for manned missions to the Moon, Mars, and beyond. To support this strategy, NASA and Made in Space, Inc. are developing the 3D Printing In Zero-G payload as a Technology Demonstration for the International Space Station. The 3D Printing In Zero-G experiment will be the first machine to perform 3D printing in space. The greater the distance from Earth and the longer the mission duration, the more difficult resupply becomes; this requires a change from the current spares, maintenance, repair, and hardware design model that has been used on the International Space Station up until now. Given the extension of the ISS Program, which will inevitably result in replacement parts being required, the ISS is an ideal platform to begin changing the current model for resupply and repair to one that is more suitable for all exploration missions. 3D Printing, more formally known as Additive Manufacturing, is the method of building parts/ objects/tools layer-by-layer. The 3D Print experiment will use extrusion-based additive manufacturing, which involves building an object out of plastic deposited by a wire-feed via an extruder head. Parts can be printed from data files loaded on the device at launch, as well as additional files uplinked to the device while on-orbit. The plastic extrusion additive manufacturing process is a low-energy, low-mass solution to many common needs on board the ISS. The 3D Print payload will serve as the ideal first step to proving that process in space. It is unreasonable to expect NASA to launch large blocks of material from which parts or tools can be traditionally machined, and even more unreasonable to fly up specialized manufacturing hardware to perform the entire range of function traditionally machining requires. The technology to produce parts on demand, in space, offers unique design options that are not possible through traditional manufacturing methods while offering cost-effective, high-precision, low-unit on-demand manufacturing. Thus, Additive Manufacturing capabilities are the foundation of an advanced manufacturing in space roadmap

    Repurposing of approved drugs from the human pharmacopoeia to target Wolbachia endosymbionts of onchocerciasis and lymphatic filariasis

    Get PDF
    AbstractLymphatic filariasis and onchocerciasis are debilitating diseases caused by parasitic filarial nematodes infecting around 150 million people throughout the tropics with more than 1.5 billion at risk. As with other neglected tropical diseases, classical drug-discovery and development is lacking and a 50year programme of macrofilaricidal discovery failed to deliver a drug which can be used as a public health tool. Recently, antibiotic targeting of filarial Wolbachia, an essential bacterial symbiont, has provided a novel drug treatment for filariasis with macrofilaricidal activity, although the current gold-standard, doxycycline, is unsuitable for use in mass drug administration (MDA). The anti-Wolbachia (A·WOL) Consortium aims to identify novel anti-Wolbachia drugs, compounds or combinations that are suitable for use in MDA. Development of a Wolbachia cell-based assay has enabled the screening of the approved human drug-pharmacopoeia (∼2600 drugs) for a potential repurposing. This screening strategy has revealed that approved drugs from various classes show significant bacterial load reduction equal to or superior to the gold-standard doxycycline, with 69 orally available hits from different drug categories being identified. Based on our defined hit criteria, 15 compounds were then selectively screened in a Litomosoides sigmodontis mouse model, 4 of which were active. These came from the tetracycline, fluoroquinolone and rifamycin classes. This strategy of repurposing approved drugs is a promising development in the goal of finding a novel treatment against filariasis and could also be a strategy applicable for other neglected tropical diseases

    Dynamical Masses for Pre-Main Sequence Stars: A Preliminary Physical Orbit for V773 Tau A

    Get PDF
    We report on interferometric and radial-velocity observations of the double-lined 51-d period binary (A) component of the quadruple pre-main sequence (PMS) system V773 Tau. With these observations we have estimated preliminary visual and physical orbits of the V773 Tau A subsystem. Among other parameters, our orbit model includes an inclination of 66.0 ±\pm 2.4 deg, and allows us to infer the component dynamical masses and system distance. In particular we find component masses of 1.54 ±\pm 0.14 and 1.332 ±\pm 0.097 M_{\sun} for the Aa (primary) and Ab (secondary) components respectively. Our modeling of the subsystem component spectral energy distributions finds temperatures and luminosities consistent with previous studies, and coupled with the component mass estimates allows for comparison with PMS stellar models in the intermediate-mass range. We compare V773 Tau A component properties with several popular solar-composition models for intermediate-mass PMS stars. All models predict masses consistent to within 2-sigma of the dynamically determined values, though some models predict values that are more consistent than others.Comment: ApJ in press; 25 pages, 6 figures; data tables available in journal versio
    • …
    corecore